Prediksi Penyebaran COVID-19 Di Indonesia Menggunakan Long Short Term Memory

Authors

  • Haviluddin Haviluddin Universitas Mulawarman Author
  • Novianti Puspitasari Universitas Mulawarman Author
  • Raynold Raynaldo Universitas Mulawarman Author

Keywords:

COVID-19, Indonesia, LSTM, MSE, Prediction

Abstract

Penelitian ini bertujuan untuk memprediksi arah tren penyebaran COVID-19 di Indonesia, serta memperkirakan jumlah kumulatif kasus terkonfirmasi dan kematian dalam 30 hari ke depan. Model Long Short-Term Memory (LSTM) digunakan karena kemampuannya dalam mengolah data time-series, sementara Mean Squared Error (MSE) digunakan sebagai fungsi kerugian untuk mengukur akurasi prediksi. Sebanyak sembilan skenario pengujian dilakukan untuk masing-masing kategori kasus terkonfirmasi dan kematian, guna menentukan model terbaik. Berdasarkan hasil pengujian, model menunjukkan arah tren yang meningkat (uptrend) untuk kasus kumulatif terkonfirmasi maupun kematian. Prediksi menunjukkan bahwa pada tanggal 19 Juli 2021, jumlah kasus terkonfirmasi di Indonesia akan mencapai 2.917.557 kasus. Sementara itu, prediksi untuk jumlah kasus kematian hingga 9 Agustus 2021 diperkirakan mencapai 73.265 kasus. Temuan ini diharapkan dapat menjadi acuan bagi pemangku kebijakan dalam menyusun strategi penanganan pandemi secara lebih tepat dan terukur.

Downloads

Download data is not yet available.

References

A. Synowiec, A. Szczepański, E. Barreto-Duran, L. K. Lie, and K. Pyrc, “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection,” Clin. Microbiol. Rev., vol. 34, no. 2, Mar. 2021, doi: 10.1128/CMR.00133-20.

A. AminJafari and S. Ghasemi, “The possible of immunotherapy for COVID-19: A systematic review,” Int. Immunopharmacol., vol. 83, p. 106455, Jun. 2020, doi: 10.1016/j.intimp.2020.106455.

R. Grieve et al., “The importance of investing in data, models, experiments, team science, and public trust to help policymakers prepare for the next pandemic,” PLOS Glob. Public Heal., vol. 3, no. 11, p. e0002601, Nov. 2023, doi: 10.1371/journal.pgph.0002601.

S. Shah, A. Mulahuwaish, K. Z. Ghafoor, and H. S. Maghdid, “Prediction of global spread of COVID-19 pandemic: a review and research challenges,” Artif. Intell. Rev., vol. 55, no. 3, pp. 1607–1628, Mar. 2022, doi: 10.1007/s10462-021-09988-w.

S. Ryu et al., “Epidemiology and Transmission Dynamics of Infectious Diseases and Control Measures,” Viruses, vol. 14, no. 11, p. 2510, Nov. 2022, doi: 10.3390/v14112510.

J. H. Ellwanger, A. B. G. da Veiga, V. de L. Kaminski, J. M. Valverde-Villegas, A. W. Q. de Freitas, and J. A. B. Chies, “Control and prevention of infectious diseases from a One Health perspective,” Genet. Mol. Biol., vol. 44, no. 1 suppl 1, 2021, doi: 10.1590/1678-4685-gmb-2020-0256.

V. K. R. Chimmula and L. Zhang, “Time series forecasting of COVID-19 transmission in Canada using LSTM networks,” Chaos, Solitons & Fractals, vol. 135, p. 109864, Jun. 2020, doi: 10.1016/j.chaos.2020.109864.

T. Alafif, A. M. Tehame, S. Bajaba, A. Barnawi, and S. Zia, “Machine and Deep Learning towards COVID-19 Diagnosis and Treatment: Survey, Challenges, and Future Directions,” Int. J. Environ. Res. Public Health, vol. 18, no. 3, p. 1117, Jan. 2021, doi: 10.3390/ijerph18031117.

S. Zheng et al., “Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study,” BMJ, p. m1443, Apr. 2020, doi: 10.1136/bmj.m1443.

J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN,” Wirel. Pers. Commun., vol. 128, no. 4, pp. 2913–2936, Feb. 2023, doi: 10.1007/s11277-022-10079-4.

K. Ijaz, Z. Hussain, J. Ahmad, S. F. Ali, M. Adnan, and I. Khosa, “A Novel Temporal Feature Selection Based LSTM Model for Electrical Short-Term Load Forecasting,” IEEE Access, vol. 10, pp. 82596–82613, 2022, doi: 10.1109/ACCESS.2022.3196476.

S. Arora, K. D. Bhaukhandi, and P. K. Mishra, “Coronavirus lockdown helped the environment to bounce back,” Sci. Total Environ., vol. 742, p. 140573, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140573.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

J. Shen, W. Wu, and Q. Xu, “Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model,” Dec. 2024, [Online]. Available: http://arxiv.org/abs/2412.07997

F. M. Salem, “Recurrent Neural Networks (RNN),” in Recurrent Neural Networks, Cham: Springer International Publishing, 2022, pp. 43–67. doi: 10.1007/978-3-030-89929-5_3.

Y. Zhang, “Research on Text Classification Method Based on LSTM Neural Network Model,” in 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), IEEE, Apr. 2021, pp. 1019–1022. doi: 10.1109/IPEC51340.2021.9421225.

D. Innovation, “Machine Learning in Business Analytics: Advancing Statistical Methods for Data- Driven Innovation,” no. August, pp. 104–111, 2023, doi: 10.32996/jcsts.

World Health Organization, “Situation by Country, Territory & Area.”

W. Ahmed and M. Bahador, “The accuracy of the LSTM model for predicting the S&P 500 index and the difference between prediction and backtesting,” KTH R. Inst. Technol., p. 35, 2018.

Downloads

Published

2025-07-04

Issue

Section

Articles

Most read articles by the same author(s)