Algoritma Evolusi untuk Masalah Optimasi
Keywords:
Optimasi, Solusi Optimum, Metode Heuristic, Algoritma Evolusi, Pendidikan, TransportasiAbstract
Masalah optimasi sering muncul dalam pengambilan keputusan. Solusi optimum merupakan tujuan dari optimasi, namun penyelesaian matematis sering sulit diterapkan pada permasalahan kompleks dengan data besar. Untuk kasus kompleks, metode optimasi eksak digunakan karena mampu menghasilkan solusi lebih optimal dibanding metode lain. Meski demikian, banyak permasalahan diselesaikan menggunakan pendekatan heuristik, salah satunya algoritma evolusi yang terinspirasi dari konsep evolusi biologis. Algoritma ini mencakup algoritma genetika, evolusi multiobjek, fuzzy evolusi, evolusi strategis, dan evolusi diferensial. Masing-masing memiliki karakteristik unik dan banyak diterapkan di bidang transportasi dan pendidikan. Pemilihan algoritma evolusi yang tepat berpengaruh pada hasil optimasi. Penelitian membandingkan kelima algoritma untuk menentukan algoritma yang paling optimal di berbagai bidang, dengan hasil yang menunjukkan bahwa algoritma evolusi diferensial potensial untuk diterapkan secara luas dalam penyelesaian masalah optimasi.
Downloads
References
D. V. Medhane and A. K. Sangaiah, “Search space-based multi-objective optimization evolutionary algorithm,” Comput. Electr. Eng., vol. 58, pp. 126–143, 2017.
L. Cui, P. Ou, X. Fu, Z. Wen, and N. Lu, “A novel multi-objective evolutionary algorithm for recommendation systems,” J. Parallel Distrib. Comput., vol. 103, pp. 53–63, 2017.
J. Chen, V. Nair, and T. Menzies, “Beyond evolutionary algorithms for search-based software engineering,” Inf. Softw. Technol., vol. 95, pp. 281–294, 2018.
J. Ma, J. Liu, W. Ma, M. Gong, and L. Jiao, “Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks,” Sci. World J., vol. 2014, 2014.
Y. Qi, J. Yu, X. Li, Y. Wei, and Q. Miao, “Reservoir flood control operation using multi-objective evolutionary algorithm with decomposition and preferences,” Appl. Soft Comput. J., vol. 50, pp. 21–33, 2017.
G. Caruso and J. H. Kämpf, “Building shape optimisation to reduce air-conditioning needs using constrained evolutionary algorithms,” Sol. Energy, vol. 118, pp. 186–196, 2015.
Y. Kadin, M. Gamba, and M. Faid, “Identification of the hydrogen diffusion parameters in bearing steel by Evolutionary Algorithm,” J. Alloys Compd., vol. 705, pp. 475–485, 2017.
D. Jesenko, M. Mernik, B. Žalik, and D. Mongus, “Two-level evolutionary algorithm for discovering relations between nodes’ features in a complex network,” Appl. Soft Comput. J., vol. 56, pp. 82–93, 2017.
J. de Andrade Silva, E. R. Hruschka, and J. Gama, “An evolutionary algorithm for clustering data streams with a variable number of clusters,” Expert Syst. Appl., vol. 67, pp. 228–238, 2017.
J. Kämpf and D. Robinson, “Optimisation of urban Energy Demand using an evolutionary Algorithm,” Ibpsa, pp. 668–673, 2009.
X. Ye, S. Liu, Y. Yin, and Y. Jin, “User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm,” Knowledge-Based Syst., vol. 135, pp. 113–124, 2017.
B. P. M. Ida, “Sistem Penjadwalan Produksi Menggunakan Metode Fuzzy Support Vector Machines dan Algoritma Evolusi Fuzzy,” Pros. Conf. Smart-Green Technol. Electr. Inf. Syst., no. November, pp. 14–15, 2013.
R. Marwati, K. Yulianti, and H. W. Pangestu, “Fuzzy evolutionary algorithm to solve chromosomes conflict and its application to lecture schedule problems,” AIP Conf. Proc., vol. 1708, 2016.
L. Teylo, U. de Paula, Y. Frota, D. de Oliveira, and L. M. M. A. Drummond, “A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds,” Futur. Gener. Comput. Syst., vol. 76, pp. 1–17, 2017.
I. Palogos, M. Galetakis, C. Roumpos, and F. Pavloudakis, “Selection of optimal land uses for the reclamation of surface mines by using evolutionary algorithms,” Int. J. Min. Sci. Technol., vol. 27, no. 3, pp. 491–498, 2017.
A. Maulida, D. Ayu, W. F. Mahmudy, and I. Cholissodin, “Optimasi Model Fuzzy Ahp Dengan Menggunakan Algoritma Evolution Strategies ( Studi Kasus : Pemilihan Calon Penerima Beasiswa Ptiik Universitas Brawijaya ),” J. Mhs. PTIIK Univ. Brawijaya, vol. 5, no. 15, 2015.
A. C. Syarif et al., “Evolusi Dan Pembobotan Distribusi Beban Kuliah,” J. Temat. VOL.2, vol. 2, pp. 81–94, 2014.
T. J. Choi, C. W. Ahn, and J. An, “An adaptive cauchy differential evolution algorithm for global numerical optimization,” Sci. World J., vol. 2013, 2013.
N. P. Garcia-Lopez, M. Sanchez-Silva, A. L. Medaglia, and A. Chateauneuf, “An improved robust topology optimization approach using multiobjective evolutionary algorithms,” Comput. Struct., vol. 125, pp. 1–10, 2013.
B. Doerr, C. Klein, and T. Storch, “Faster evolutionary algorithms by superior graph representation,” Proc. 2007 IEEE Symp. Found. Comput. Intell. FOCI 2007, pp. 245–250, 2007.
H. Susanto and Sudiyanto, “Data Mining Untuk Memprediksi Prestasi Siswa Berdasarkan Sosial Ekonomi, Motivasi, Kedisiplinan Dan Prestasi Masa Lalu,” J. Pendidik. Vokasi, vol. 4, no. 2, pp. 222–231, 2014.
Y. Wang, X. Chen, W. Gui, C. Yang, L. Caccetta, and H. Xu, “A hybrid multiobjective differential evolution algorithm and its application to the optimization of grinding and classification,” J. Appl. Math., vol. 2013, 2013.
W. Ma, X. Fan, Y. Wu, and L. Jiao, “An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration,” Math. Probl. Eng., vol. 2014, pp. 16–22, 2014.
B. Zhu, Y. Ding, and K. Hao, “A novel automatic detection system for ECG arrhythmias using maximum margin clustering with immune evolutionary algorithm,” Comput. Math. Methods Med., vol. 2013, 2013.
W. Liu and X. Li, “A Problem-Reduction Evolutionary Algorithm for Solving the Capacitated Vehicle Routing Problem,” Int. J. Math. Math. Sci., vol. 2015, 2015.
W. Xiang, X. Meng, M. An, Y. Li, and M. Gao, “Research Article An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies,” Comput. Intell. Neurosci., vol. 2015, pp. 1–15, 2015.
D. Gómez-Lorente, I. Triguero, C. Gil, and O. Rabaza, “Multi-objective evolutionary algorithms for the design of grid-connected solar tracking systems,” Int. J. Electr. Power Energy Syst., vol. 61, pp. 371–379, 2014.
L. Wang, H. Qu, T. Chen, and F. P. Yan, “An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain,” Sci. World J., vol. 2013, no. Dc, 2013.
A. Dea and T. Listrik, “Koordinasi Optimal Capacitive Energy Storage ( CES ) dan Kontroler PID Menggunakan Differential Evolution,” J. Tek. ITS, vol. 1, 2012.
X. Shi, L. Qiao, and Z. Zhu, “A novel hybrid discrete differential evolution algorithm for workingsteps sequencing in multi-channel turn-milling complex machining,” Adv. Mech. Eng., vol. 7, no. 11, pp. 1–14, 2015.
A. W. Mohamed, “Solving stochastic programming problems using new approach to Differential Evolution algorithm,” Egypt. Informatics J., vol. 18, no. 2, pp. 75–86, 2017.
X. Li and M. Yin, “Application of Differential Evolution Algorithm on Self-Potential Data,” PLoS One, vol. 7, no. 12, pp. 1–11, 2012.
Y. Zhang, P. Lin, Z. Chen, and S. Cheng, “A Population Classification Evolution Algorithm for the Parameter Extraction of Solar Cell Models,” Int. J. Photoenergy, vol. 2016, pp. 16–18, 2016.
R. M. Alguliev, R. M. Aliguliyev, and C. A. Mehdiyev, “pSum-SaDE: A Modified p -Median Problem and Self-Adaptive Differential Evolution Algorithm for Text Summarization,” Appl. Comput. Intell. Soft Comput., vol. 2011, pp. 1–13, 2011.
L. Cao, L. Xu, and E. D. Goodman, “A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems,” Comput. Intell. Neurosci., vol. 2016, 2016.
C. K. Chong, M. S. Mohamad, S. Deris, M. S. Shamsir, Y. W. Choon, and L. E. Chai, “Improved Differential Evolution Algorithm for Parameter Estimation to Improve the Production of Biochemical Pathway,” Int. J. Interact. Multimed. Artif. Intell., vol. 1, no. 5, p. 22, 2012.
D. A. Suprayogi and W. F. Mahmudy, “Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry,” J. Buana Inform., vol. 6, no. 2, pp. 121–130, 2015.
R. C. Barros, M. P. Basgalupp, A. C. P. L. F. De Carvalho, and A. A. Freitas, “A survey of evolutionary algorithms for decision-tree induction,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 3, pp. 291–312, 2012.
S. M. Corns, D. A. Ashlock, and K. M. Bryden, “Development of antibiotic regimens using graph based evolutionary algorithms,” BioSystems, vol. 114, no. 3, pp. 178–185, 2013.
I. A. Fajarwati and W. Anggraeni, “Penerapan Algoritma Differential Evolution untuk Penyelesaian Permasalahan Vehicle Routing Problem with Delivery and Pick-up,” J. Tek. ITS, vol. 1, no. 2301–9271, pp. A391–A396, 2012.
B. Afshar-Nadjafi, H. Karimi, A. Rahimi, and S. Khalili, “Project scheduling with limited resources using an efficient differential evolution algorithm,” J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, pp. 176–184, 2015.
A. W. Mohamed, H. Z. Sabry, and T. Abd-Elaziz, “Real parameter optimization by an effective differential evolution algorithm,” Egypt. Informatics J., vol. 14, no. 1, pp. 37–53, 2013.
P. Shahnazari-Shahrezaei, R. Tavakkoli-Moghaddam, M. Azarkish, and A. Sadeghnejad-Barkousaraie, “a Differential Evolution Algorithm Developed for a Nurse Scheduling Problem,” South African J. Ind. Eng., vol. 23, no. 3, pp. 68–90, 2012.
J. L. Redondo, J. Fernandez, and P. M. Ortigosa, “FEMOEA: A Fast and Efficient Multi-objective Evolutionary Algorithm,” Math. Methods Oper. Res., vol. 85, no. 1, pp. 113–135, 2017.
T. Biondi, A. Ciccazzo, V. Cutello, S. D. Antona, and G. Nicosia, “Multi-Objective Evolutionary Algorithms and Pattern Search Methods for Circuit Design Problems,” J. Univers. Comput. Sci., vol. 12, no. 4, pp. 432–449, 2006.
K. Deb, “Multi-objective optimization using evolutionary algorithms: an introduction,” Multi-objective Evol. Optim. Prod. Des. Manuf., pp. 1–24, 2011.
S. Wappler and F. Lammermann, “Using evolutionary algorithms for the unit testing of object-oriented software,” Proc. 2005 Conf. Genet. Evol. Comput. - GECCO ’05, p. 1053, 2005.
D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’06, p. 554, 2006.
M. Georgioudakis, M. Fragiadakis, and M. Papadrakakis, “Multi-criteria selection and scaling of ground motion records using Evolutionary Algorithms,” Procedia Eng., vol. 199, pp. 3528–3533, 2017.
V. Nannen and A. E. Eiben, “Relevance estimation and value calibration of evolutionary algorithm parameters,” IJCAI Int. Jt. Conf. Artif. Intell., pp. 975–980, 2007.
R. Kurniawan, M. C. nerfia nikentari. S.T., and M. S. E. Hendra Kurniawan, S.Kom., “Optimasi Tebar Benih Dan Pakan Pada Suatu Kolam Menggunakan Algoritma Evolution Strategies,” Progr. Stud. Tek. Inform. Umr., no. 50, 2010.
H. R. Maier, A. C. Zecchin, L. Radbone, and P. Goonan, “Optimising the mutual information of ecological data clusters using evolutionary algorithms,” Math. Comput. Model., vol. 44, no. 5–6, pp. 439–450, 2006.
F. Mostofi and F. Sadikoglu, “Discovering SNP Interactions Associated with Breast Cancer Using Evolutionary Algorithms,” Procedia Comput. Sci., vol. 102, no. August, pp. 562–569, 2016.
D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Clustering in Evolutionary Algorithms to Efficiently Compute Simultaneously Local and Global Minima,” in 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1847–1854.
H. M. Bekhit, “Sustainable groundwater management in coastal aquifer of Sinai using evolutionary algorithms,” Procedia Environ. Sci., vol. 25, pp. 19–27, 2015.
D. Mandal, K. S. Kola, J. Tewary, V. P. Roy, and A. K. Bhattacharjee, “Synthesis of steered Flat-Top beam pattern using evolutionary algorithm,” Adv. Electromagn., vol. 5, no. 3, pp. 3–7, 2016.
J. Chiou, C. Chang, and C. Li, “A backtracking evolutionary algorithm for power systems,” MATEC Web Conf., vol. 1046, 2017.
L. Carro-Calvo, S. Salcedo-Sanz, L. Prieto, N. Kirchner-Bossi, A. Portilla-Figueras, and S. Jiménez-Fernández, “Wind speed reconstruction from synoptic pressure patterns using an evolutionary algorithm,” Appl. Energy, vol. 89, no. 1, pp. 347–354, 2012.
E. Sugiarto, “Penjadwalan Perkuliahan Otomatis Berbasis Fuzzy logic Dan Genetic Algorithm PadaUniversitas Dian Nuswantoro,” Techno.COM, vol. 14, no. 4, pp. 315–328, 2015.
L. A. Malik, E. R. Pramudya, T. Informatika, F. Ilmu, K. Universitas, and D. Nuswantoro, “IMPLEMENTASI ALGORITMA FUZZY EVOLUSI UNTUK IMPLEMENTATION OF EVOLUTION FUZZY ALGORITHM FOR,” vol. 10, no. 2, pp. 207–220, 2017.
L. Tao, T. Nguyen, and H. Hasegawa, “Model-based Pose Estimation for Texture-less Objects with Differential Evolution Algorithm,” MATEC Web Conf., vol. 15001, pp. 8–11, 2017.
M. S. Saad, L. N. H. Mat Deri, Z. Shayfull, S. M. Nasir, and M. Fathullah, “Parameter Estimation of Damped Compound Pendulum Using Bat Algorithm,” MATEC Web Conf., vol. 78, 2016.
F. H. G. Adi Chandra Syarif, “Penerapan Algoritma Evolusi Dengan Metode Generation Replacement Pada Aplikasi,” J. Temat., vol. 1, no. December, pp. 10–23, 2016.
Jur. Komp. Cerdas Vol. 1, No. 1, May 2025, pp. 1-10
A. W. Mohamed, “RDEL: Restart differential evolution algorithm with local search mutation for global numerical optimization,” Egypt. Informatics J., vol. 15, no. 3, pp. 175–188, 2014.
R. Marwati, “IMPLEMENTASI ALGORITMA FUZZY PERKULIAHAN,” pp. 31–45.
N. N. and I. H., “Accelerating differential evolution using an adaptive local search,” Evol. Comput. IEEE Trans., vol. 12, no. 1, pp. 107–125, 2008.
H. Abderazek, D. Ferhat, I. Atanasovska, and K. Boualem, “A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears,” Adv. Mech. Eng., vol. 7, no. 9, pp. 1–11, 2015.
X. Xu, L. Li, L. Fan, J. Zhang, X. Yang, and W. Wang, “Hybrid discrete differential evolution algorithm for lot splitting with capacity constraints in flexible job scheduling,” Math. Probl. Eng., vol. 2013, no. 2007, 2013.
S. A. Taher and S. A. Afsari, “Optimal location and sizing of UPQC in distribution networks using differential evolution algorithm,” Math. Probl. Eng., vol. 2012, 2012.
C. L. Lu, S. Y. Chiu, C. H. Hsu, and S. J. Yen, “Enhanced differential evolution based on adaptive mutation and wrapper local search strategies for global optimization problems,” J. Appl. Res. Technol., vol. 12, no. 6, pp. 1131–1143, 2014.
D. Chakraborty, W. Vaz, and A. K. Nandi, “Optimal driving during electric vehicle acceleration using evolutionary algorithms,” Appl. Soft Comput. J., vol. 34, pp. 217–235, 2015.
N. Lerma, J. Paredes-Arquiola, J. Andreu, A. Solera, and G. M. Sechi, “Assessment of evolutionary algorithms for optimal operating rules design in real Water Resource Systems,” Environ. Model. Softw., vol. 69, pp. 425–436, 2015.
Z. Hu, S. Xiong, Z. Fang, and Q. Su, “A convergent differential evolution algorithm with hidden adaptation selection for engineering optimization,” Math. Probl. Eng., vol. 2014, 2014.
X. Liu, F. Bai, S. Ouyang, X. Wang, H. Li, and H. Jiang, “Cyndi: A multi-objective evolution algorithm based method for bioactive molecular conformational generation,” BMC Bioinformatics, vol. 10, pp. 1–14, 2009.
I. A. Harun, W. F. Mahmudy, and N. Yudistira, “Implementasi Evolution Strategies untuk Penyelesaian Vehicle Routing Problem With Time Windows pada Distribusi Minuman Soda XYZ,” Repos. J. Mhs. PTIIK Univ. Brawijaya, vol. Vol.4, No., no. 1, 2014.
A. S. Sinaga, “Pembebanan Ekonomis dengan Pengendalian Emisi pada Pembangkit Termis Menggunakan Algoritma Evolusi Diferensial,” Jnteti, vol. 3, no. 2, 2014.
C. Catania, C. Zanni-Merk, F. De Bertrand De Beuvron, and P. Collet, “A multi objective evolutionary algorithm for solving a real health care fleet optimization problem,” Procedia Comput. Sci., vol. 60, no. 1, pp. 256–265, 2015.
D. Mandal, A. Chatterjee, and A. K. Bhattacharjee, “Design of fully digital controlled shaped beam synthesis using differential evolution algorithm,” Int. J. Antennas Propag., vol. 2013, 2013.
M. Mutingi, “A fuzzy simulated evolution algorithm for integrated manufacturing system design,” Int. J. Ind. Eng. Comput., vol. 4, no. 2, pp. 177–190, 2013.
M. Fachrie, S. Widowati, A. T. Hanuranto, F. T. Informatika, and U. Telkom, “IMPLEMENTASI ALGORITMA FUZZY EVOLUSI UNTUK PENENTUAN POSISI BASE TRANSCEIVER STATION (BTS),” pp. 1–6, 2011.
A. Clarke and J. C. Miles, “Strategic Fire and Rescue Service decision making using evolutionary algorithms,” Adv. Eng. Softw., vol. 50, no. 1, pp. 29–36, 2012.
M. Corn and M. Atanasijević-Kunc, “Designing model and control system using evolutionary algorithms,” IFAC-PapersOnLine, vol. 28, no. 1, pp. 526–531, 2015.
R. Ben Abdessalem, S. Nejati, T. Stifter, and S. A. Iee, “Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms,” ICSE, 2017.
P. L. Myers and D. B. Spencer, “Application of a multi-objective evolutionary algorithm to the spacecraft stationkeeping problem,” Acta Astronaut., vol. 127, pp. 76–86, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Komputasi Cerdas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.